Polyethylene terephthalate (PET)
Polyethylene terephthalate (CHEBI:131701) is a synthetic polymer of repeating units of terephthalic acid (CHEBI:30043) and ethylene glycol (CHEBI:30742). PET is mainly used for the production of PET bottles, foil and various fibers in textile industry. PET is one of the few polymers, for which a number of microbial enzymes are known. They belong to the cutinases (EC 3.1.1.74), lipases (EC 3.1.1.3) and carboxylesterases (EC 3.1.1.1 /EC 3.1.1.101/ EC 3.1.1.2) and can act on amorphous but not crystalline PET. These enzymes break the ester bond in the polymer to either produce bis (2-hydroxyethyl) terephthalate (BHET), mono (2-hydroxyethyl) terephthalate (MHET) or terephthalic acid (TPA) and ethylene glycol (EG). The enzymes act as exo-enzymes. MHET can subsequently be cleaved with a specific MHETase (EC 3.1.1.102) and the TPA monomers degraded via cleavage of the aromatic ring structure using known aryl pathways (Wei et al., 2017; Danso et al., 2019, Taniguchi et al., 2019). PET-active enzymes are often designated 'PETases'. Notably, the majority of all PET-active enzmes are promiscous enzymes.
Currently known and biochemically characterized active PET hydrolases are listed below and grouped according to their phylogenetic affiliation. Predicted and not characterized enzymes are not included. For multiple PDB entries only one lead struture is included.
In case you are aware of PET-active biochemically characterized enzymes that are not listed below, please contact the PAZY team.
Cite: Buchholz, P.C.F., Feuerriegel, G., Zhang, H., Perez-Garcia, P., Nover, L.-L., Chow, J., Streit, W.R. and Pleiss, J (2022);
Plastics degradation by hydrolytic enzymes: The Plastics-Active Enzymes Database - PAZy
(download link for reference manager)
Microbial host/enzyme/gene | EC number | Reference | GenBank/ UniProt/MGnify | PDB entry | NCBI BLAST |
---|---|---|---|---|---|
Bacteria | |||||
Pseudomonadota (synonym with Proteobacteria) | |||||
Ideonella sakaiensis 201-F61 , ISPETase, ISF6_4831 (→DuraPETase) (→ThermoPETase) (→Fast-PETase) (→HotPETase) (→DepoPETase) | EC 3.1.1.101 | Yoshida, 2016; Han 2017; Cui, 2021; Son, 2019; Lu, 2022; Bell, 2022; Shi et al., 2023; Sevilla et al., 2023 | A0A0K8P6T7 | 5XFY, and others | WP_054022242.1 |
Oleispira antarctica RB-8, PET5, LipA (=Oacut) | EC 3.1.1.1 | Danso, 2018, Blasquez-Sanchez, 2021 | R4YKL9_OLEAN | MBQ0729274.1 | |
Vibrio gazogenes, PET6, BSQ33_03270 | EC 3.1.1.1 | Danso, 2018 | A0A1Z2SIQ1_VIBGA | 7Z6B | ASA57064.1 |
Caldimonas brevitalea, PET12 (PbCut;SbCut), AAW51_2473 | EC 3.1.1.1 | Danso, 2018; Chen, 2021; Avilan,2023 | A0A0G3BI90_9BURK | AKJ29164.1 | |
Marinobacter sp., PLE628 | EC 3.1.1.1 | Meyer Cifuentes, 2022 | OK558825 | 7VMD | OK558825.1 |
Marinobacter sp., PLE629 | EC 3.1.1.1 | Meyer Cifuentes, 2022 | OK558824 | 7VPA | OK558824.1 |
Pseudomonas oleovorans/ pseudoalcaligenes DSM 50188, PpCutA/PoCut | EC 3.1.1.74 | Inglis, 2011; Haernvall, 2017 | ADK73612 | ADK73612 | |
Pseudomonas pelagia DSM 25163, PpelaLip | EC 3.1.1.74 | Haernvall, 2017 | KU695573 | ANP21910.1 | |
Halopseudomonas aestusnigri VGXO14, PE-H, B7O88_11480 | EC 3.1.1.1 | Bollinger, 2020 | A0A1H6AD45 | 6SBN, and others | WP_088276085.1 |
Pseudomonas mendocina ATCC 53552, PmC | EC 3.1.1.3 | Ronkvist, 2009 | N20M5AZM016 | 2FX5 | 2FX5_A |
Pseudomonas saudimassiliensis, PsCut | EC 3.1.1.1 | Avilan, 2023 | A0A078MGG8 | 8AIS | WP_044499735.1 |
Halopseudomonas bauzanensis, PbauzCut | EC 3.1.1.1 | Avilan, 2023 | A0A031MKR8 | 8AIT | WP_036989706.1 |
Pseudomonas alcaligenes, PaCut | EC 3.1.1.1 | Avilan, 2023 | SUD16364.1 | SUD16364.1 | |
Moraxella sp.TA144, lip1, Mors1 | EC 3.1.1.3 | Blasquez-Sanchez, 2021 | P19833 | 8SPK | P19833.1 |
Pseudomonas pseudoalcaligenes, PpEst (tesA) | EC 3.1.1.2 | Haernvall, 2017, Wallace, 2016 | W6R2Y2 | WP_003460012.1 | |
Pseudomonas sp., esterase MG8 | EC 3.1.1.1 | Eiamthong, 2022 | MGYP000532440779 | MGYP000532440779 | |
Pseudomonas sp. strain 9.2, EstB | EC 3.1.1.1 | Edwards et al., 2022 | WP_085690612 | WP_085690612 | |
Rhizobacter gummiphilus NS21, RgPETase/RgCut-I | EC 3.1.1.1 | Sagong, 2021, Avilan, 2023 | A4W93_05950 | 7DZT, and others | A4W93_05950 |
Rhizobacter gummiphilus, RgCut-II | EC 3.1.1.1 | Avilan, 2023 | WP_085749238.1 | 8AIR | WP_085749238.1 |
Ketobacter sp., Enzyme 403 | Erickson, 2022 | RLU00646.1 | RLU00646.1 | ||
Ketobacter sp., Enzyme 409 | Erickson, 2022 | RLT92980.1 | RLT92980.1 | ||
Ketobacter alkanivorans, Enzyme 412 | Erickson, 2022 | WP_101893509.1 | WP_101893509.1 | ||
Comamonadaceae bacterium, Enzyme 406 | Erickson, 2022 | ODU60407.1 | ODU60407.1 | ||
Caldimonas taiwanensis+D57, CtPL (Enzyme 504) | Chen, 2021; Erickson, 2022 | WP_062195544.1 | WP_062195544.1 | ||
Acidovorax delafieldii, AdCut | EC 3.1.1.1 | Avilan, 2023 | Q8RR62 | BAB86909.1 | |
Aquabacterium parvum, ApLip-Ec | Ho, 2023 | ||||
Burkholderia bacterium, BurPL | Chen, 2021; Chen, 2021;Sagong, 2022; Huang, 2023 | A0A1F4JXW8 | 7CWG | OGB27210 | |
Pseudomonas sp., GlacPETase | Qi, 2023 | ||||
Halopseudomonas formosensis, Hfor_PE-H | de Witt, 2023 | WP_090538641.1 | WP_090538641.1 | ||
Pseudomonas sp. JM16B3, jmPE13 | Zhou, 2024 | ||||
Pseudomonas sp. JM16B3, jmPE14 | Zhou, 2024 | ||||
Pseudomonadota bacterium, dsPETase05 | Chen, 2024 | ||||
Pseudomonadota bacterium, dsPETase06 | Chen, 2024 | MEC8523093.1 | MEC8523093.1 | ||
Brucella, PD3 | Jin, 2024 | WP_010659881.1 | WP_010659881.1 | ||
Actinomycetota | |||||
LCC, leaf compost metagenome, highly similar to HRB29 locus GBD22443 | EC 3.1.1.74 | Sulaiman, 2012; Shirke, 2018; Tournier, 2020 | G9BY57 | 4EBO and others | G9BY57.1 |
BhrPETase from HR29 bacterium, >96% identical to LCC | EC 3.1.1.74 | Xi, 2021 | GBD22443 | 7EOA | GBD22443.1 |
Thermobifida (Thermomonspora) fusca | |||||
T. fusca DSM43793, BTA-1, TfH | EC 3.1.1.74 | Dresler, 2006; Müller 2005; Kleeberg 1998; 2005 | Q6A0I4 | 5ZOA | Q6A0I4 |
T. fusca DSM43793, BTA-2, TfH | EC 3.1.1.74 | Dresler, 2006; Müller 2005; Kleeberg 1998; 2005 | AJ810119 | Q6A0I3 | |
T. fusca DSM44342, TfH42_Cut1 | EC 3.1.1.74 | Herrero Acero, 2011 | E9LVI0_THEFU | ADV92528.1 | |
T. fusca (strain YX), WSH03-11, Tfu_0883 | EC 3.1.1.74 | Chen, 2008; Su, 2013; Lykidis, 2007 | Q47RJ6_THEFY | Q47RJ6 | |
T. fusca (strain YX), WSH03-11, Tfu_0882 | EC 3.1.1.74 | Chen, 2008 | Q47RJ7_THEFY | Q47RJ7 | |
T. fusca, TfCut_1 (Cut-1.kw3) (only active on 3PET; not on higher polymers!) | 3.1.1.101 | Herrero Acero, 2011 | E5BBQ2 | E5BBQ2 | |
T. fusca, TfCut_2 (Cut-2.kw3) | EC 3.1.1.74 | Furukawa, 2019, Roth, 2014; Wei 2016 | E5BBQ3_THEFU | 4CG1 | CBY05530 |
T. fusca NRRL B-8184, Cut1 | EC 3.1.1.74 | Hedge, 2013 | JN129499.1 | AET05798.1 | |
T. fusca NRRL B-8184, Cut2 | EC 3.1.1.74 | Hedge, 2013 | JN129500.1 | AET05799.1 | |
T. fusca, Enzyme 701 | Erickson, 2022 | WP_104613137.1 | WP_104613137.1 | ||
T. fusca, Enzyme 702 | Erickson, 2022 | ADM47605.1 | 7QJQ | ADM47605.1 | |
T. cellulosilytica DSM44535, Thc_Cut1 | EC 3.1.1.74 | Herrero Acero, 2011, Ribitsch 2017 | ADV92526.1 | 5LUI | ADV92526.1 |
T. cellulosilytica DSM44535, Thc_Cut2 | EC 3.1.1.74 | Herrero Acero, 2011 Ribitsch 2017 | ADV92571 | 5LUJ | ADV92527.1 |
T. cellulosilytica, Enzyme 711 | Erickson, 2022 | WP_083947829.1 | 7QJT | WP_083947829.1 | |
T. curvata DSM43183, Tcur_1278 | EC 3.1.1.74 | Wei, 2014 | D1A9G5 | ACY96861.1 | |
T. curvata DSM43183, Tcur0390 | EC 3.1.1.74 | Wei, 2014 | ACY95991.1 | ACY95991.1 | |
T. halotolerans, Thh_Est | EC 3.1.1.1 | Ribitsch, 2012 | H6WX58 | AFA45122.1 | |
T. alba (AHK119), Est1 (Hydrolase 4); Enzyme 708 | EC 3.1.1.1 | Hu, 2010; Erickson, 2022 | BAI99230 | BAI99230.2 | |
T. alba DSM43185, Tha_Cut1, cut1 | EC 3.1.1.74 | Ribitsch, 2012 | E9LVH7 | ADV92525.1 | |
T. alba AHK119, Est119, est2 | EC 3.1.1.1 | Kitadokoro, 2019 | F7IX06 | 6AID | BAK48590.1 |
Saccharomonospora (Thermoactinomyces) viridis AHK190, Cut190 | EC 3.1.1.74 | Miyakawa, 2014; Kawai, 2014; Oda, 2018 | W0TJ64 | 4WFK and others | BAO42836.1 |
Actinobacteria bacterium OK074, Enzyme 405 | Erickson, 2022 | WP_082414832.1 | WP_082414832.1 | ||
Allorhizocoloa rhizosphaerae, Enzyme 407 | Erickson, 2022 | WP_117215036.1 | WP_117215036.1 | ||
Nocardioidaceae bacterium, Enzyme 503 | Erickson, 2022 | EGD44994.1 | EGD44994.1 | ||
Marinactinospora thermotolerans, MtCut / Enzyme 606 | Liu et al. 2022 Erickson, 2022, | WP_078759821.1 | 7QJO | WP_078759821.1 | |
Actinobacteria bacterium OV320, Enzyme 607 | Erickson, 2022 | WP_107095481.1 | WP_107095481.1 | ||
Saccharopolyspora flava, Enzyme 611 | Erickson, 2022 | WP_093412886.1 | 7QJP | WP_093412886.1 | |
Rhodococcus sp., Rcut (PBATh), OL660765 | Won, 2022 | UNZ22463.1 | UNZ22463.1 | ||
Streptomyces scabiei, Sub1 | Jabloune, 2020 | QEX94755.1 | QEX94755.1 | ||
Streptomyces sp. SM14, SM14est | Almeida, 2019; Carr, 2023 | DAC80635 | DAC80635 | ||
Compost metagenome, PHL-12 | Sonnendecker, 2022 | SAY37579.1 | SAY37579.1 | ||
Compost metagenome, PHL-22 | Sonnendecker, 2022 | SAY37582.1 | SAY37582.1 | ||
Amycolatopsis bacterium, PET40 | Zhang, 2023 | WAU86704.1 | 8A2C | WAU86704.1 | |
Microbispora sp., SIBER-1 | Tiong, 2023 | WOR09923 | WOR09923 | ||
Aeromicrobium, dsPETase01 | Chen, 2024 | ||||
Dietzia kunjamensis, Dkca1 | Singh, 2024 | WID88783.1 | WID88783.1 | ||
Bacillota | |||||
Bacillus subtilis 4P3-11, BsEstB | EC 3.1.1.1 | Ribitsch,2011 | ADH43200.1 | ADH43200.1 | |
Bacillus safensis, LipMRD9 | EC 3.1.1.3 | Vidal, 2024 | APJ12152.1 | APJ12152.1 | |
Thermoanaerobacter sp. , PHL-7 (PES-H1; PES-H2) | EC 3.1.1.74 | Sonnendecker, 2022; Pfaff, 2022 | 7NEI_A/B /7CUV_A, MBO2503201.1 SAY37592.1 | 7NEI; 7CUVA/7W69 | 7NEI_A / 7CUV_A |
Compost metagenome, PHL-32 | Sonnendecker, 2022 | SAY37583.1 | SAY37583.1 | ||
Clostridium botulinum ATCC3502, Cbotu_EstA3 | Perz et al., 2015 | AKZ20828.1 | AKZ20828.1 | ||
Cryptosporangium aurantiacum, CaPETase | Hong, 2023 | SHM40309.1 | 7YM9, 7YME | SHM40309.1 | |
Caldibacillus thermoamylovorans, Lip4_120 | EC:3.1.1.3 | Yan, 2024 | WP_108898452.1 | WP_108898452.1 | |
Caldibacillus thermoamylovorans, Est8_89 | EC:4.2.99.20 | Yan, 2024 | CEE00769.1 | CEE00769.1 | |
Caldibacillus thermoamylovorans, Est11_32 | Yan, 2024 | WP_041846030.1 | WP_041846030.1 | ||
Caldibacillus thermoamylovorans, Est18_23 | EC 3.1.1.- | Yan, 2024 | WP_041847557.1 | WP_041847557.1 | |
Caldibacillus thermoamylovorans, Ces19_14 | EC 3.1.1.1 | Yan, 2024 | WP_034767800.1 | WP_034767800.1 | |
Caldibacillus thermoamylovorans, Ces39_5 | EC 3.1.1.1 | Yan, 2024 | WP_108898647.1 | WP_108898647.1 | |
Holdemanella biformis, HG-2 | Zhou, 2024 | WP_118011433 | WP_118011433 | ||
Clostridiales bacterium AM23-16LB, HG-3 | Zhou, 2024 | RGD93181 | RGD93181 | ||
Heyndrickxia coagulans, HG-4 | Zhou, 2024 | WP_013858543.1 | WP_013858543.1 | ||
Longicatena, HG-5 | Zhou, 2024 | ||||
TmFae-PETase (likely Enterococcaceae) | Mamtimin, 2024 | ||||
Bacteroidota | |||||
Aequorivita sp. CIP111184, PET27 | EC 3.1.1.1 | Zhang, 2022 | WP_111881932 | WP_111881932 | |
Kaistella (Chryseobacterium) jeonii, PET30 | EC 3.1.1.1 | Zhang, 2022 | WP_039353427 | 7PZJ | WP_039353427 |
Chloroflexota | |||||
Chloroflexus sp. MS-G, Enzyme 202 | Erickson, 2022 | YNPsite05_CeleraDRAFT_401410 | 7QJM | 7QJM_A | |
Chloroflexi bacterium, IS104 | Distaso, 2023 | UNZ81746 | UNZ81746 | ||
Chloroflexi bacterium, IS124 | Distaso, 2023 | UNZ81748 | UNZ81748 | ||
Dehalococcoidia bacterium, IS114 | Distaso, 2023 | UNZ81747 | UNZ81747 | ||
Deinococcata | |||||
Deinococcus maricopensis DSM 21211, PET1/DmPETase | Danso et al., 2018; Makryniotis et al., 2023 | E8U721 | ADV66860 | ||
Thermodesulfobacteriota | |||||
Geothermal metagenome, Sis | Ercolano, 2024 | XDS72785.1 | XDS72785.1 | ||
Metagenome-derived without a phylogenetic affiliation | |||||
Metagenome-derived, no obvious affiliation, PET2, lipIAF5-2 | EC 3.1.1.1 | Danso, 2018, Nakamura, 2021 | ACC95208.1 | 7ECB and others | ACC95208.1 |
Metagenome-derived. no obvious affiliation, Enzyme 101 | Erickson, 2022 | YNPsite06_CeleraDRAFT_263770 | |||
Metagenome-derived. no obvious affiliation, Enzyme 102 | Erickson, 2022 | YNP6_02150 | |||
Metagenome-derived. no obvious affiliation, Enzyme 204 | Erickson, 2022 | YNP18_240440 | |||
Metagenome-derived. no obvious affiliation, Enzyme 211 | Erickson, 2022 | JzSedJan11_10004914 | |||
Metagenome-derived. no obvious affiliation, Enzyme 214 | Erickson, 2022 | YNPsite06_CeleraDRAFT_160970 | |||
Metagenome-derived. no obvious affiliation, Enzyme 301 | Erickson, 2022 | YNPsite06_CeleraDRAFT_367810 | |||
Metagenome-derived. no obvious affiliation, Enzyme 305 | Erickson, 2022 | GxsBSedJan11_10251181 | |||
Metagenome-derived, no obvious affiliation, Enzyme 307 | Erickson, 2022 | JGI20132J14458_10325381 | |||
Compost metagenome, PHL-42 | Sonnendecker, 2022 | SAY37584.1 | SAY37584.1 | ||
Compost metagenome, PHL-52 | Sonnendecker, 2022 | SAY37587.1 | SAY37587.1 | ||
Compost metagenome, PHL-62 | Sonnendecker, 2022 | SAY37589.1 | SAY37589.1 | ||
Archaea | |||||
Candidatus Bathyarchaeota archaeon, PET46 | EC 3.1.1.73 | Perez-Garcia, 2023 | RLI42440.1 | 8B4U | RLI42440.1 |
Eukarya | |||||
Pseudozyma (Candida) antarctica, lipase B, CalB | EC 3.1.1.3 | Ronkvist, 2009, Carniel, 2017; Brackmann, 2023 | LIPB_PSEA2 | 1TCA and others | LIPB_PSEA2 |
Pseudozyma (Candida) antarctica, CaL | EC 3.1.1.3 | Brackmann, 2023 | |||
Fusarium solani , FsC | EC 3.1.1.74 | Silva, 2005 | AAA33335.1 | 1AGY and others | AAA33335.1 |
Fusarium oxysporum, FoCut5a | EC 3.1.1.74 | Dimarogona, 2015 | X0BTD8 | 5AJH | EXK81749 |
Humicola insolens , HiC | EC 3.1.1.74 | Ronkvist, 2009, Carniel, 2017; Brackmann, 2023 | A0A075B5G4 | 4OYL and others | 4OYY_A |
Thermomyces lanuginosus, Lipozyme TL | EC 3.1.1.3 | Brueckner, 2008; Eberl, 2009; Brackmann, 2023 | |||
Moniliophthora roreri, MRCUT1 | EC 3.1.1.74 | Vázquez-Alcántara, 2021 | ESK97883 | ESK97883 | |
Rhizomucor miehei, RmL | EC 3.1.1.3 | Brackmann, 2023 | |||
Dactylonectria macrodidyma, DmC | EC 3.1.1.74 | Brinch-Pedersen, 2024 | KAH7127633 | KAH7127633 | |
Thermocarpiscus australiensis, TaC | EC 3.1.1.74 | Brinch-Pedersen, 2024 | |||
Remersonia thermophila, RtC | EC 3.1.1.74 | Brinch-Pedersen, 2024 | |||
Engineered enzymes without WT hydrolase activity | |||||
Actinia fragacea, FraC5 | Robles-Martín, 2023 |
1 Now named Piscinibacter sakaiensis.
2 Only weight loss of PET substrate observed.
3 Only marginal concentrations of hydrolysis products released.
4 Only degradation of 3PET shown.
5 Non-catalytic actinoporin membrane pore. Catalytic triad and oxyanion hole were added by protein engineering.